Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production.
نویسندگان
چکیده
Yeast to directly convert cellulose and, especially, the microcrystalline cellulose into bioethanol, was engineered through display of minicellulosomes on the cell surface of Saccharomyces cerevisiae. The construction and cell surface attachment of cellulosomes were accomplished with two individual miniscaffoldins to increase the display level. All of the cellulases including a celCCA (endoglucanase), a celCCE (cellobiohydrolase), and a Ccel_2454 (β-glucosidase) were cloned from Clostridium cellulolyticum, ensuring the thermal compatibility between cellulose hydrolysis and yeast fermentation. Cellulases and one of miniscaffoldins were secreted by α-factor; thus, the assembly and attachment to anchoring miniscaffoldin were accomplished extracellularly. Immunofluorescence microscopy, flow cytometric analysis (FACS), and cellulosic ethanol fermentation confirmed the successful display of such complex on the yeast surface. Enzyme-enzyme synergy, enzyme-proximity synergy, and cellulose-enzyme-cell synergy were analyzed, and the length of anchoring miniscaffoldin was optimized. The engineered S. cerevisiae was applied in fermentation of carboxymethyl cellulose (CMC), phosphoric acid-swollen cellulose (PASC), or Avicel. It showed a significant hydrolytic activity toward microcrystalline cellulose, with an ethanol titer of 1,412 mg/L. This indicates that simultaneous saccharification and fermentation of crystalline cellulose to ethanol can be accomplished by the yeast, engineered with minicellulosome.
منابع مشابه
Engineered pentafunctional minicellulosome for simultaneous saccharification and ethanol fermentation in Saccharomyces cerevisiae.
Several yeast strains have been engineered to express different cellulases to achieve simultaneous saccharification and fermentation of lignocellulosic materials. However, successes in these endeavors were modest, as demonstrated by the relatively low ethanol titers and the limited ability of the engineered yeast strains to grow using cellulosic materials as the sole carbon source. Recently, su...
متن کاملPurification and biochemical properties of a thermostable, haloalkaline cellulase from Bacillus licheniformis AMF-07 and its application for hydrolysis of different cellulosic substrates to bioethanol production
A thermophilic strain AMF-07, hydrolyzing carboxymethylcellulose (CMC) was isolated from Kerman hot spring and was identified as Bacillus licheniformis based on 16S rRNA sequence homology. The carboxymethylcellulase (CMCase) enzyme produced by the B. licheniformis was purified by (NH4)2SO4 precipitation, ion exchange and gel filtration chromatography. The purified enzyme gave a single band on S...
متن کاملStatistical Optimization of Conditions for Maximize Production of Mannan by Saccharomyces Cerevisiae Using Response Surface Methodology
In view of the increase in Saccharomyces cerevisiae mannan content, the culture condition for S.cerevisiae were optimized in this study. The influence of culture condition such as original pH, inoculum size, and temperature on mannan production were evaluated using Response surface methodology. The mathematical model was established by the quadratic rotary combination design. with the order of ...
متن کاملStatistical Optimization of Conditions for Maximize Production of Mannan by Saccharomyces Cerevisiae Using Response Surface Methodology
In view of the increase in Saccharomyces cerevisiae mannan content, the culture condition for S.cerevisiae were optimized in this study. The influence of culture condition such as original pH, inoculum size, and temperature on mannan production were evaluated using Response surface methodology. The mathematical model was established by the quadratic rotary combination design. with the order of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 33 شماره
صفحات -
تاریخ انتشار 2012